COMBINATORICA

Akadémiai Kiadó - Springer-Verlag

ON A PROBLEM OF ERDŐS AND LOVÁSZ: RANDOM LINES IN A PROJECTIVE PLANE*

JEFF KAHN

Received May 1, 1990

Let n(k) be the least size of an intersecting family of k-sets with cover number k, and let \mathcal{P}_k denote any projective plane of order k-1.

Theorem. There is a constant A such that if $\mathcal H$ is a random set of $m \ge Ak \log k$ lines from $\mathcal P_k$ then $\Pr(\tau(\mathcal H) < k) \to 0 \ (k \to \infty)$.

Corollary. If there exists a \mathcal{P}_k then $n(k) = O(k \log k)$.

These statements were conjectured by P. Erdős and L. Lovász in 1973.

0. Introduction

An old problem of Erdős and Lovász [2] asks, given a positive integer k, what (roughly) is the least n=n(k) for which there exists an n-member intersecting family of k-sets whose cover number is k? (Recall that a family $\mathcal H$ is intersecting if its members are pairwise nondisjoint; its cover number, $\tau(\mathcal H)$, is the least size of a set meeting all sets of $\mathcal H$. For more on this and many related questions see the excellent survey [3].)

The function n(k) was introduced in [2], where it was shown that

- (0.1) $n(k) \ge 8k/3 3$, and
- (0.2) $n(k) \le 4k^{3/2} \log k$ if k-1 is the order of a projective plane.

Let \mathcal{P}_k denote any projective plane of order k-1 (i.e. having k points on a line). The upper bound (0.2) is an immediate consequence of

Theorem 0. ([2]). If \mathcal{H} is a random set of $m \geq 4k^{3/2} \log k$ lines from \mathcal{P}_k then with high probability $\tau(\mathcal{H}) = k$.

(That is: \mathcal{H} is chosen uniformly at random from m-subsets of the line set of \mathcal{P} ; with high probability means with probability tending to 1 as $k \to \infty$; throughout this paper log denotes natural logarithm.)

Here we prove, as conjectured (with C in place of 22) in [2],

Theorem 1. If \mathcal{H} is a random set of $m \geq 22k \log k$ lines of \mathcal{P}_k then with high probability $\tau(\mathcal{H}) = k$.

Corollary. $n(k) = O(k \log k)$ provided there exists a \mathcal{P}_k .

AMS subject classification code 1991: 05 B 40, 05 C 65, 05 D 05, 51 E 15

^{*} Supported in part by NSF-DMS87-83558 and AFOSR grants 89-0066, 89-0512 and 90-0008

418 JEFF KAHN

Of course $\tau(\mathcal{H}) \leq k$ for any set \mathcal{H} of lines of $\mathcal{P} = \mathcal{P}_k$, and equality at least requires that

(0.3) each point of \mathcal{P} is on at least two lines of \mathcal{H} .

It is probably true that if one randomly chooses lines ℓ_1, ℓ_2, \ldots from \mathcal{P} then with high probability $\tau(\{\ell_1, \ldots, \ell_t\}) = k$ as soon as $\mathcal{H} := \{\ell_1, \ldots, \ell_t\}$ satisfies (0.3) (this happens when t is about $3k \log k$), but we do not see how to prove this.

As for lower bounds, remarkably, nothing is known beyond (0.1). (As mentioned in [2] and again in [1], even n(k) > 3k does not seem easy.) Erdős (e.g. [1]) currently offers \$500 for a proof or disproof of n(k) = O(k).

Curiously, if n(k) = O(k) then the best examples must be quite different from those considered here. Recent results of the author [4] imply that, if we add to the conditions "intersecting family of k-sets with cover number k" the requirement that edge intersection sizes in $\mathcal H$ be bounded by some o(k), then indeed $|\mathcal H|/k \to \infty$. In particular, $|\mathcal H| = \Omega(k\sqrt{\log k/\log\log k})$ — probably improvable to $\Omega(k\log k/\log\log k)$ — whenever $\mathcal H$ is a subset of the line set of $\mathcal P_k$ with $\tau(\mathcal H) = k$.

Proof of Theorem 1

A few conventions. We write S and L for the point and line sets of $\mathcal{P}=\mathcal{P}_k$. For $X, Y\subseteq S$, L(X) denotes the set of lines meeting $X, \overline{L}(X)$ the complementary set, and L(X,Y) the set of lines meeting both X and Y. For $x\in S$ we shorten $L(\{x\})$ to L(x), etc., except that when $x\in X$, we use L(x,X) for $L(\{x,X\setminus\{x\}\})$. We set $Q=|S|=|L|=k^2-k+1$.

In what follows, A, B, C, D, E > 0 and $\delta \in (0,1)$ are constants whose values will be set later. We must show that for suitable A (eventually about 22), if \mathcal{H} is a random subset of L of size $m \ge Ak \log k$, then

(1.1) with high probability $\tau(\mathcal{H}) = k$.

We assume throughout that k is large enough to support our assertions. As in [2], we use the "counting sieve", proving the somewhat stronger

(1.2)
$$\sum \left\{ \Pr \left(\mathcal{H} \subseteq L(X) \right) \; : \; X \in \binom{S}{k-1} \right\} = o(1).$$

As mentioned in [2], X's for which $\overline{L}(X)$ is very small are easily handled:

$$(1.3) \qquad \sum \left\{ \Pr\left(\mathcal{H} \subseteq L(X)\right) : X \in \binom{S}{k-1}, \ |\overline{L}(X)| < k^{3/2} - k \right\} = o(1).$$

Proof. (Sketch.) As observed in [2] (see Lemma on p. 625), $|\overline{L}(X)| < k^{3/2} - k$ implies there is some $\ell \in L$ such that $|\ell \setminus X| < k^{1/2}$. Noting that $|\ell \setminus X| = t$ implies $|\overline{L}(X)| \ge t(k-t)$, we find that the left-hand side of (1.3) is less than

$$\sum_{1 \le t < \sqrt{k}} Q \binom{k}{t} \binom{Q}{t-1} \left(1 - \frac{t(k-t)}{Q}\right)^{Ak \log k},$$

which is o(1) if A > 3.

If $|\overline{L}(X)| = k^2/\gamma$ then

$$\Pr\left(\mathcal{H} \subseteq L(X)\right) < \left(1 - \frac{1}{\gamma}\right)^{Ak \log k} < e^{-(Ak/\gamma) \log k}.$$

So in view of (1.3), (1.2) follows from

$$(1.4) \qquad \sum_{\gamma < \sqrt{k}+2} \left| \left\{ X \in {S \choose k-1} : |\overline{L}(X)| = \frac{k^2}{\gamma} \right\} \right| e^{-(Ak/\gamma)\log k} = o(1).$$

(Of course we only consider γ for which $k^2/\gamma \in \mathbb{N}$.)

Let B < A constant. If $\gamma \le B$ then the γ^{th} summand in (1.4) is less than

$$\binom{Q}{k-1}e^{-(Ak/\gamma)\log k} < e^{k(\log k + 1) - (Ak/B)\log k}.$$

So (1.4) follows from

(1.5) For $B < \gamma < k^{1/2} + 2$,

$$\left| \left\{ X \in \binom{S}{k-1} \ : \ |\overline{L}(X)| = \frac{k^2}{\gamma} \right\} \right| < e^{(Bk/\gamma)\log k}.$$

We assume henceforth that $B < \gamma < k^{1/2} + 2$.

The basic idea of the proof of (1.5) is that when $\overline{L}(X)$ is small, L(x,X) tends to be small for $x \in X$ (most lines are tangent to X), and large for $x \notin X$, the discrepancy between "small" and "large" being great enough that even for an appropriately small, randomly chosen $X_0 \subseteq X$, the value $|L(x,X_0)|$ will usually determine whether x is in X. This is made precise in (1.6)–(1.8) below.

We will need the following more or less standard fact.

Lemma. If $R \subseteq S$ and $M \subseteq L$ are such that each $x \in R$ is on at most t < k|M|/Q lines of M, then

$$|R| \le \left(\frac{k|M|}{Q} - t\right)^{-2} (k-1)|M| \left(1 - \frac{|M|}{Q}\right).$$

Proof. Writing $d_M(x)$ for the number of lines of M containing x, we have

$$\sum_{x \in S} d_M(x) = k|M|,$$

and

$$\sum_{x \in S} d_M(x)(d_M(x) - 1) = |M|(|M| - 1),$$

whence a little calculation gives

$$|R|\left(\frac{k|M|}{Q}-t\right)^2 \leq \sum_{x \in S} \left(d_M(x) - \frac{k|M|}{Q}\right)^2 = (k-1)|M|\left(1 - \frac{|M|}{Q}\right).$$

Given
$$X \in \binom{S}{k-1}$$
 with $|\overline{L}(X)| = k^2/\gamma$, set

$$Z = Z(X) = \{x \in X : |L(x, X)| \ge Ck/\gamma\}$$

 $V = V(X) = \{u \notin X : |L(u, X)| < \delta k\}.$

(1.6)
$$|Z| < 2k/C$$
.

(1.7)
$$|V| < (1 + o(1)) \frac{k}{\gamma} \left(1 - \frac{1}{\gamma} \right) (1 - \frac{1}{\gamma} - \delta)^{-2}.$$

Proof of (1.6). For $x \in X$ set s(x) = |L(x, X)|. We have

$$Q - k^2/\gamma = |L(X)| \le \sum_{x \in X} (k - s(x)) + \frac{1}{2} \sum_{x \in X} s(x)$$
$$= k^2 - k - \frac{1}{2} \sum_{x \in X} s(x).$$

A little rearranging gives

$$2k^2/\gamma > 2(k^2/\gamma - 1) \ge \sum_{x \in X} s(x) \ge |Z| \frac{Ck}{\gamma},$$

and (1.6) follows.

Proof of (1.7). Apply the lemma with R=V, M=L(X) and $t=\delta k$.

(1.8) If $\delta D > C$ and k is sufficiently large, then there exists $X_0 \subseteq X$ with $|X_0| = \lfloor Dk/\gamma \rfloor$ and

(1.9) $|L(u, X_0)| > Ck/\gamma$ for all $u \in S \setminus (V \cup X)$.

Proof. For $u \in S \setminus (V \cup X)$ let $\{\ell_1, \dots, \ell_m\} \subseteq L(u, X)$ where $m = \lceil \delta k \rceil$, and let $x_i \in \ell_i \cap X$. Then $|L(u, X_0)| \ge |\{x_1, \dots, x_m\} \cap X_0|$ (for any X_0). Now take X_0 random of size $\lfloor Dk/\gamma \rfloor$ from X. The expected value of $|\{x_1, \dots, x_m\} \cap X_0|$ is $m \lfloor Dk/\gamma \rfloor / |X| \sim \delta Dk/\gamma$. Since $C < \delta D$ (and these quantities are constants), (1.8) follows from standard large deviation results.

Suppose that with each X as above we associate some $X_0 := \varphi(X)$ as in (1.8). Of course,

(1.10) there are at most
$$\begin{pmatrix} Q \\ |Dk/\gamma| \end{pmatrix}$$
 possibilities for X_0

(as X varies), a number compatible with an upper bound $e^{O((k/\gamma)\log k)}$. We accordingly fix X_0 and try to bound $|\varphi^{-1}(X_0)|$. Let

$$U = \{ u \in S \setminus X_0 : |L(u, X_0)| < Ck/\gamma \}.$$

If $\varphi(X) = X_0$, then

$$|U \setminus X| \le |V(X)| < \varepsilon k$$

where

$$\varepsilon = (1 + o(1))\gamma^{-1} \left(1 - \frac{1}{\gamma}\right) \left(1 - \frac{1}{\gamma} - \delta\right)^{-2}$$

(by (1.9) and (1.7)). Thus $|U| < (1+\varepsilon)k$ and

(1.11) there are at most

$$\sum_{i \le \varepsilon k} \binom{\lfloor (1+\varepsilon)k \rfloor}{i} \quad \text{possibilities for} \quad U \setminus X, \quad \text{or equivalently, for} \quad U \cap X.$$

We now fix $U \cap X$ and estimate the number of ways to choose $X \setminus U$. Set $T = (U \cap X) \cup X_0$ and $W = \{u \notin T : |L(u,T)| < k/E\}$.

(1.12) $|X\setminus (W\cup T)| < Ek/\gamma$.

Proof. This follows from

$$Q - k^2/\gamma = |L(X)| \le k|X| - (k/E)|X \setminus (W \cup T)|.$$

Thus

(1.13) there are at most
$$\sum_{i \le Ek/\gamma} {Q \choose i}$$
 choices for $X \setminus (W \cup T)$.

Set $\beta = 1/E + 2/C$ and $\alpha = 1 - \beta - \sqrt{(1-\beta)^2 - 2/\gamma}$. (For large γ , α will be about $(1-\beta)^{-1}\gamma^{-1}$.)

(1.14) If

$$(1.15) (1-\beta)^2 - 2/\gamma > (2k)^{-2},$$

then $|W \setminus X| \leq \alpha k$.

Proof. Notice that $|X \setminus T| < 2k/C$ (by (1.6) since $U \supseteq X \setminus Z \Rightarrow T \supseteq X \setminus Z \Rightarrow X \setminus T \subseteq Z$). It follows that for $w \in W$,

$$|L(w,X)| \le |L(w,T)| + |X \setminus T| < \beta k.$$

Now if $\{w_0,\ldots,w_{m-1}\}\subseteq W\setminus X$ we have

$$k^{2}/\gamma = |\overline{L}(X)|$$

$$\geq |L(\{w_{0}, \dots, w_{m-1}\}) \setminus L(X)|$$

$$= \sum_{i=0}^{m-1} |L_{i}(w_{i}) \setminus L(X \cup \{w_{0}, \dots, w_{i-1}\})|$$

$$> \sum_{i=0}^{m-1} ((1-\beta)k - i)$$

$$> (1-\beta)km - \frac{m^{2}}{2}.$$

422 JEFF KAHN

Since this holds for every $m \leq |W \setminus X|$ it follows that $|W \setminus X| \leq \alpha k$ where α , as above, is the smaller root of

$$\frac{1}{2}x^2 - (1 - \beta)x + \frac{1}{\gamma} = 0.$$

(Note the hypothesis (1.15) guarantees the existence of $m \in \mathbb{N}$ for which $\frac{m^2}{2}$ $(1-\beta)km + \frac{k^2}{\gamma} < 0.$ Since also $|W \cap X| \le |X \setminus T| < 2k/C$ we have

(1.16) If (1.15) holds then there are at most $\sum_{i \leq \alpha k} {\lfloor (\alpha + 2/C)k \rfloor \choose i}$ choices for $W \setminus X$, or, equivalently, for $W \cap X$.

In sum, the number of possibilities for $X \in \binom{S}{k-1}$ with $|\overline{L}(X)| = k^2/\gamma$ is at most the product of the bounds in (1.10), (1.11), (1.13) and (1.16), namely,

$$(1.17) \qquad \qquad \binom{Q}{\left\lfloor \frac{Dk}{\gamma} \right\rfloor} \sum_{i \leq \varepsilon k} \binom{\lfloor (1+\varepsilon)k \rfloor}{i} \sum_{i < Ek/\gamma} \binom{Q}{i} \sum_{i \leq \alpha k} \binom{\lfloor (\alpha+2/C)k \rfloor}{i}$$

(again, assuming $\delta D > C$ and (1.15) holds). It is now easy, using the estimate $\binom{b}{a} <$ $e^{a(\log(b/a)+1)}$, to choose parameters so that this product is at most, say,

$$e^{(21.5+o(1))(k/\gamma)\log k}$$

For large γ the log of the product (1.17) is asymptotically at most

$$\frac{k}{\gamma} \left[(D+E) \log k + \left(D + (1-\delta)^{-2} + E + (1-\beta)^{-1} \right) \log \gamma \right]$$

$$\leq \frac{k}{\gamma} \log k \left[\frac{3}{2} (D+E) + \frac{1}{2} (1-\delta)^{-2} + \frac{1}{2} (1-1/E - 2/C)^{-1} \right]$$

(using $\gamma < \sqrt{k} + 2$). Then if C = 4, D = 7, E = 3 and $\gamma = 3/5$ (not the best possible values), the expression of brackets of $21\frac{1}{8}$.

For small γ ($\gamma = k^{o(1)}$ is enough), things are even easier. Here the log of (1.17) is just

$$(1+o(1))(D+E)(k/\gamma)\log k.$$

(This requires $E/\gamma < 1/3$ (say) — so that the third factor in (1.17) is less than $\binom{Q}{\lceil Ek/\gamma \rceil}$ — which will be true since we will have $(\gamma >)B > 3E)$, and we can easily choose legal parameters with D+E<21.

So (with A=22) we have Theorem 1.

Added in proof: The author recently proved n(k) = O(k).

References

- P. Erdős: On the combinatorial problems I would most like to see solved, Combinatorica 1 (1981), 25–42.
- [2] P. Erdős, and L. Lovász: Problems and results on 3-chromatic hypergraphs and some related questions, in: *Infinite and Finite Sets* (Proc. Colloq. Math. Soc. J. Bolyai 10, Keszthely, Hungary, 1973), A Hajnal et. al. (eds.), North Holland, Amsterdam, 1975, 609–627.
- [3] Z. FÜREDI: Matching and covers in hypergraphs, Graphs and Combinatorics 4 (1988), 115-206.
- [4] J. Kahn: On a theorem of Frankl and Rödl, in preparation.

Jeff Kahn

Department of Mathematics and Center for O. R. Rutgers University, New Brunswick NJ 08903, U.S.A. jkahn@math.rutgers.edu